Universitat de Barcelona, Departament Fisica Aplicada

Akaflieg Frankfurt e.V.

Exploring gravity waves in the Pyrenees by ground based observations, in-flight measurements, and model analysis

Elena Mascus

OSTIV Met Panel

2nd - 3rd of February, 2018

Bremen

CONTENTS

2

The campaign La Cerdanya 2017

Model evaluation using observations and flight data - Bachelor Thesis

In-flight measurements
- Akaflieg Frankfurt Wave Research Camp

OSTIV Met Panel

2nd - 3rd of February, 2018 Bremen

2.

3.

The campaign La Cerdanya 2017

2nd - 3rd of February, 2018 Bremen

OSTIV Met Panel

The study site• 1100 m MSLLa Cerdanya Valley

eastern Pyrenees

OSTIV Met Panel

Project ATMOUNT

ATmosphere-surface interactions in MOUNTain areas

to study the dynamics of the precipitation processes influenced by orographic effects

to improve the **knowledge of mountain waves** and associated processes

to analyze the **interaction of gravity waves** with cloud structures and its influence on **precipitation**.

Project ATMOUNT

ATmosphere-surface interactions in MOUNTain areas

Météo France

Meteo Catalunya

University of Barcelona

University of Portsmouth

University of the Balearic Islands

2nd - 3rd of February, 2018 Bremen

OSTIV Met Panel

La Cerdanya 2017 field experiment

INSTRUMENTATION

2nd - 3rd of February, 2018 Bremen

Elena Mascus

Model evaluation using observations and flight data Bachelor Thesis

9

2nd - 3rd of February, 2018 Bremen

OSTIV Met Panel

Comparison with ground based observations

SURFACE STATIONS

2nd - 3rd of February, 2018 Bremen

Comparison with ground based observations

ULTRA HIGH FREQUENCY WIND PROFILER

2nd - 3rd of February, 2018 Bremen

Vertical velocity

Overestimated and temporally displaced simulated vertical velocity as a consequence from the exaggerated horizontal wind speed especially during the first half of the day

2nd - 3rd of February, 2018 Bremen

OSTIV Met Panel

Animation

Plane section in 3000m MSL

Development of the vertical and horizontal wind speed during 24 h

2nd - 3rd of February, 2018 Bremen

Animation

Plane section in 3000m MSL

Development of the vertical and horizontal wind speed during 24 h

2nd - 3rd of February, 2018 Bremen

Wave Flight Track

Wind: Take-off aerodrome:

north-east La Cerdanya

Source: <u>onlinecontest.org</u>

Source: Google Earth

2nd - 3rd of February, 2018 Bremen

OSTIV Met Panel

Comparison of the simulated vertical velocity with flight data

PLANE SECTION 4000M MSL

CROSS SECTION

Animation

Comparison of the simulated vertical velocity with flight data

Simulated vertical velocity in comparison with flight data

- good performance in high-altitudes
- Model obviously calculates laminar mountain wave flow in low-levels (cross section) which is probably causing the weak performance compared to the surface measurements
 model configuration

OSTIV Met Panel

In-flight measurements

Akaflieg Frankfurt Wave Research Camp

contact: wissenschaft@akaflieg-frankfurt

2nd - 3rd of February, 2018 Bremen

3

OSTIV Met Panel

Elena Mascus

OPEN GLIDE COMPUTER

BY HENDRIK HOETH

SENSORS

- static and dynamic air pressure
- high resolution GPS
- air temperature
- humidity
- 3-axis gyroscope
- 3-axis accelerometer
- 3-axis digital magnetic compass
- real time clock

originally by Henrik Hoeth

Measured and calculated vertical speeds

CLIMB MODE

2nd - 3rd of February, 2018 Bremen

OSTIV Met Panel

Measured and calculated vertical speeds

STRAIGHT FLIGHT MODE

Measured and calculated vertical speeds

BOTH MOUNTAIN WAVE REGIMES

CONCLUSION

 More gliders should be equipped with measurement devices since in-flight measurements have a tremendous potential for mountain wave research.

 Low cost, small and reasonably accurate measurement equipment already exists.

 Mountain wave research requires numerical modeling as well as in-situ measurements. Low-level simulations are yet to be improved and therefore high altitude measurements are necessary.

ACKNOWLEDGEMENT

Mireia Udina i Sistach Maria Rosa Soler Duffour

Universitat de Barcelona, Departament Fisica Aplicada

Philipps Universität Marburg, Datenbionik

Akaflieg Frankfurt e.V. contact: wissenschaft@akaflieg-frankfurt

Christof Maul

Alfred Ultsch

Technische Universität Braunschweig, Institut für Physikalische und Theoretische Physik

Akaflieg Frankfurt e.V.

Universität Marburg

Technische Universität Braunschweig

2nd - 3rd of February, 2018 Bremen

OSTIV Met Panel

Thank you for your attention !

OSTIV Met Panel

Appendix Calculated true air speed through the pitot pressure and static pressure

Appendix

Polar vertical speed and true air speed

Appendix Stick lift velocity and true air speed

