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What is driving thermals?

 Classic point of view

 Thermal updraft is induced by temperature 
differences of air masses inside and outside 
of thermals: 
Warmer (lighter) air rises in surrounding 
colder (denser/heavier) air

 Based an analysis of atmospheric soundings
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Sounding Analysis
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Henry Blum’s Hypothesis

 already 600 m AGL no more significant 
temperature difference between air masses 
inside and outside thermals, although updraft 
strength is strongest at or above that level

 derived from Carsten Lindemann’s 
measurements

 at 200 m temperature differencs only ca 0.3 
degrees

 thus thermals cannot be fed from temperature 
differences
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Carsten Lindemann’s measurements
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Meteorologische Aspekte des Streckensegelflugs,
Detlef Müller and Christoph Kottmeier, Universität Hannover, 1985
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Henry Blum’s Hypothesis

 Buoyancy in thermal updrafts is fed by humidity 
differences of air masses inside and outside 
thermals

 Humid air is lighter than dry air

 E.g. at 30°C air of 100% humidity (saturation 
vapor pressure 42 hPa) is 1.6% lighter than dry 
air (0% humidity)

 The same effect results from a temperature 
increase by 5° (virtual temperature 35°C).
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Meteorologie für Segelflieger,  Henry Blum,
Motorbuch-Verlag Stuttgart, 2014
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Blum’s Hypothesis: Nothing New
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Meteorologische Aspekte des Streckensegelflugs,
Detlef Müller and Christoph Kottmeier, Universität Hannover, 1985

Müller and Kottmeier have reported already in 1985:
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Blum’s Hypothesis: Nothing New

Alfred Ultsch,  Christof Maul

OSTIV Met Panel Meeting, Bremen, 2./3.2.2018

Müller and Kottmeier have reported already in 1985:

"Density differences between rising and surrounding air are not only due to 
temperature differences, but at larger altitudes by humidity differences 
also. More humid air is lighter than dry air because in a water vapour air 
mixture water vapour has a smaller density than air. Humidity related 
density differences follow from the increase of relative humidity with 
altitude inside the thermal body which result from adiabatic cooling at a 
constant mixing ratio between water vapour and air fractions in the humid 
air sample. Density differences can reach values that correspond to a 
temeprature difference of 0.5 K. Therefore they must by no means be 
neglected and complicate the formula for Archimedean accleration."

Meteorologische Aspekte des Streckensegelflugs,
Detlef Müller and Christoph Kottmeier, Universität Hannover, 1985
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Seen by the eye of a physicist

Rising air needs buoyancy, i.e. difference in air mass densities
inside and outside of thermals 

Air is an ideal gas: pV = nRT 
p: pressure, V: volume, n: amount of substance, R: universal gas constant, T: temperature

Mass density ρ: ρ = m/V = nM/V = Mp/RT
ρ: mass density, M: molar mass

Proportionality to 1/T: ρ ~ 1/T

Proportionality to M: ρ ~ M

For given pressure buoyancy can be created by reducing the 
mass density of the air via 1) increasing the temperature T
(classic) or 2) decreasing the molar mass M (Blum) [or both].
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An aside: Air is not a sponge. 

 Please avoid saying: "Warm air can hold a large amount of 
water"

 Air is not a sponge!

 The maximum amount of water in the gas phase exclusively 
depends on the temperature of the liquid, whether there is air 
around or not. 

 The notion of air "holding" water vapor or being "saturated" by it is often
mentioned in connection with the concept of relative humidity. This, 
however, is misleading—the amount of water vapor that enters (or can 
enter) a given space at a given temperature is independent of the amount of 
air (nitrogen, oxygen, etc.) that is present. Indeed, a vacuum has the same 
equilibrium capacity to hold water vapor as the same volume filled with air; 
both are given by the equilibrium vapor pressure of water at the given 
temperature. (Wikipedia)
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Where do we stand?

 Everybody agrees that temperature and humidity are both 
relevant quantities for generating buoyancy forces

 There is a vivid discussion as to what is the dominating factor 

 We discuss several minutes of experimental data obtained 
some 40 years ago. 
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What should we do?

 Go out and get data!

What have we already done and found out?
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Equipment

 low cost sensor logger based on Arduino 

 air pressure [hPa]

 air temperature [°C]

 relative humidity [%]

 x,y GPS coordinates

 z=altitude (GPS)

 time (UTC)

 total cost

 sampling rate 1Hz

 ca. 60 EUR
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sensors:
BMP 180 (pressure)
DHT 22 (temperature/humidity)
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Namibia Campaign - Nov 2017 / Jan 2018

 Measurements

 Kritipotib / Bitterwasser + ca. 500 km East and South

14

East / km



Prof. Ultsch Databionics
University of Marburg

Alfred Ultsch,  Christof Maul

OSTIV Met Panel Meeting, Bremen, 2./3.2.2018

Measurements

 3 days with Clouds, cloud base up to 5000m

 19.95h of measurements: n= 71.000 points (1/sec)

 4 days with pure (blue) thermals, convection height 
up to 3000 m

 17.5h of measurements:  n= 65.000 points (1/sec)

 Meteorology: pressure, temperature, rel. humidy

 GPS: North, East,  Altitude, Time 

 second GPS source using IGC files

15



Prof. Ultsch Databionics
University of Marburg

Alfred Ultsch,  Christof Maul

OSTIV Met Panel Meeting, Bremen, 2./3.2.2018

Sample Observation 1: Nov 13, 2017

 red = in thermal, 

 blue = between thermals (programmed classification)

 => classification is quite good
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 red = in thermal, blue = between thermals 

 Surprise: air seems to be cooler inside thermals  ???

 Experimental artefact?
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Observation is reproducible
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Thermal #21, Jan 18, 2018 - temperature
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Thermal #21, Jan 18, 2018 - humidity
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Conclusion

21

 successful proof of concept

 large number of experimental data

 preliminary analysis yields unexpected results 
("cold thermals")

 more (new) questions, no good answers readily at hand. 
Suggestions welcome! 

To Do

 improve data sampling design to avoid biased sampling

 more data needed under different conditions

 more measuring devices needed in the gliding community
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Call for participation
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 Spread the news!

 Become part of a (global) measuring alliance yourself!

 Build your own device (design provided for free)! Or:

 Get a ready-to-use device (for compensation of expenses)!

 Contact: Alfred Ultsch 
wissenschaft@akaflieg-frankfurt.de

Very Last Slide (post conclusion)


